

Presentation Content

- Key Mission aspects
- Scientific objectives
- Performance requirements
- SODISM/PICARD telescope concept
- Outline major issues (optical view point): scaling factor
- Development status
- Conclusion

- Proposed January 98; selected October 98; Phase B 7/03/2000
- The CNES provides the microsatellite as a Line of Product bus (satellite 110 kg; power 72 W; dimensions 60x60x80 cm³):
 - ► Payload mass: up to 42 kg (no propulsion); power up to 42 W
 - ▶ Payload dimensions: 60x60x30 cm³; Data rate: ≥ 1.5 Gbits/day
 - ► Pointing | normal (platform): ± 0.1°

scientific (active guiding using payload information): ± 0.01° stellar calibration mode: ± 0.1° stellar stability: 0.01°/s bus pointing: > 90° in 10 mn (0.5°/s)

- ➡ Datation: ± 0.5 s
- ➡ Orbit restitution: ±1 km

• Orbit and launch:

- Launch now expected between mid-2005 & 2007 (before next solar maximum)
- Nominal orbit: SSO 6h/18h 750 km 98° (m near continuity: oscillations) dedicated DNEPR launcher (PICARD master payload)

Launch Window for Ø/Cste Relation %

PICARD Scientific Objectives

- **Confirm diameter variations** (and validate ground measurements and their accuracy)
- Establish relation diameter/global irradiance/differential rotation
- Study the variability (long and short terms) of the parameters
- In particular (limb advantage) observe low degree p-modes and, if their amplitude allows, detect g-modes
- Oblateness measure and solar shape to higher orders (dynamo and convection)
- Provide Space Weather solar activity full Sun images with 1" resolution in magnetically sensitive lines (Lyman α) & continua (160 nm)

- Diameter at 230 nm (SODISM)
- Diameter at 548 nm
 - ► link with & validation of ground measurements
- Lyman Alpha images of the solar disk => Ionosphere
- 160 nm images of the solar disk ⇒ magnetic activity
- Differential rotation
- The solar constant global irradiance (SOVAP)
- The integrated solar UV flux at 230 nm (**PREMOS**)
 - ozone & photometric calibration of the CCD and in selected UV and visible bands (311, 402 and 548 nm)

Solar Variability

Cumulated Solar irradiance measures since 1980 (Fröhlich and Lean, 1998)

- Variations of the solar irradiance ~ 0.1% with a period of 11 years (activity) (with ~ 0.05% due to rotational modulation)
- BUT: variations are principally due to the ~ 1% ultraviolet spectrum
- at 200 nm the variations of the spectral irradiance on the 11 years cycle is about 8%

(with ~ 4% due to rotational modulation)

Required Precision on the Diameter of Measure (Climat)

- 22 years F. Laclare serie (CERGA Astrolab)
 ⇒ variation of ~ 0.2" on the semi-diameter,
 <u>~ 0.4" on the diameter</u> over a solar cycle (less recently)
- Desirable precision for SODISM would then be 0.004'' ($\pm 2 \text{ mas at } 3\sigma$) to evidence 11 years cycle variations and the tendency on longer periods (siecle). Further, PICARD measurement is nominally on 3 to 4 years only (amplitude variation < 0.1'').

- The diameter measure is geometrical, absolute and reproducible :
 - Absolute precision of ± 2 mas on the diameter ⇒ dynamic of 25 on the measure (assuming ± 0.05" amplitude. If, like Kuhn, 2000, SOHO/MDI, only 20 mas variation observed on 3 years ⇒ dynamic of 5 on the measure only...)

Precision on the Diameter Measure

* Inflexion point measurement:

$$I(x) = a_1 + a_3 \cdot \left(1 + \left(1 + e^{a_4 \cdot (x - a_2)}\right)^{a_5}\right) \cdot \left(1 + \left(1 + e^{a_6 \cdot (x - a_2)}\right)^{a_7}\right)$$

* Precision on one realisation: $\sigma \sim 10$ mas

* Precision on 100 measures: $\sigma \sim 1$ mas on 1000 limb measures: $\sigma \sim 0.3$ mas

- g-modes < 3 mm/s (GOLF)
- Objective: 0.1 mm/s (Kumar <u>et al</u>., 1996)
- Mode of one hour period: amplitude 0,2 m
- Application of the limb enhancement factor: 0,2 x 5 = 1 m
- In term of arcsec: 1.4 10⁻⁶
- If we suppose an instantaneous measure of 0.3 mas every 3 minutes we have:

 $\sqrt{20 \times 24 \times 365 \times 2} \sim 590$ of noise reduction after <u>two years</u> $0.3/590 \Rightarrow 0.5 \ 10^{-6}$ i.e. a <u>theoretical limit of ~ 0.1 mm/s</u>

and PICARD mission is extensible to 6 years...

SODISM/PICARD Concept

4 observing modes and 2 calibration ones

UV Nominal Mode	230 nm Δ8nm
Visible	548 nm Δ8nm
Magnetic Activity	160 nm Δ8nm
Prominences and Activity	Lyman $\alpha \Delta 8$ nm
Flat Field CCD	"Diffusion"
Stellar Field Imaging Af	"Empty"

- Sound optical concept
 - active telescope Ø120 mm (3 piezos controlled by a guiding telescope)
 - large 2048x2048 CCD (thinned & back illuminated)
 - two filter-wheels behind a shutter
- "Best" choice of wavelengths
 - 230 nm "neat" UV continuum (limited limb-darkening; flat continuum)
 - ► Visible, 548 nm for ground validation
 - Solution Activity monitoring at 160 nm & Lyα
- Mechanical stability
 - Carbon-carbon low dilatation structure allowing ± 0.5° control
 - SiC mirrors: no aging of coatings and high conductivity
- Absolute dimensional calibration
 - ► HIPPARCOS star field calibration absolute ≤ 2 mas; relative << 1 mas</p>

Material Characteristics

	SIC	CC	Zerodur	INVAR	CFRP 954-
				superior	3/K135 2U
ρ in Kg/m ³	3200	1500	2500	7800	1700
E in MPa	420 000	60 000	91 000	145 000	320 000
Re in MPa	70	40	5	150	150
$\alpha 10^{-6} \text{ m/m}^{\circ}\text{C} (\text{CTE})$	2	-0,1	0,02 à 0,05	0,75 à 2	-1
λ in W/m°C	180	7	1,6	10	45
λ/α	90	70	80	10	45
E/ρ	131	40	36	19	188
Long term instability µm/m	0	0	2	2	6

Mechanical Design of SODISM/PICARD

- Mechanical structure of the SODISM/PICARD telescope (350 mm between the primary and secondary mirror and 150 mm between the primary and the CCD surface.
- Note the **4 INVAR plates** linked together with the 550 m m long **Carbon-Carbon tube** (shown in light brown) of Ø100 mm.
- The primary mirror is mounted on 3 piezoelectrics driven by a guiding telescope directly placed inside the C-C tube.
- The CCD (cooled to -40° C), is uncoupled of the INVAR plate by a Cordierite support.

Interfaces (1)

<u>CCD plate</u> Height 130 mm; Length 202 mm; thickness 20 mm; mass 0.6 kg

Fixation C-C tube with the INVAR plates

M1 Mirror Support (Piezos & Cooling)

Pointing Issues

- Requirement of 0.1" (1/10th of a pixel) classical criteria of image quality) on an openloop system ± 30" (± 15" mirror) @ 50 Hz response
- The pointing telescope provides an error signal to the satellite to control its pointing to the ± 30" pre-fine pointing range
- PI piezos foreseen, type 842.20 PI, double jauge (athermal at first order)
- Maximum hysteresis of 0.2%. If 15" represents 6 μ m (on piezo accounting coupling by thin blade) then 0.2% gives 0.06"

Focal Plane

 2k x 4 k CCD by Marconi (EEV 4280), thinned and back illuminated, square pixels 13.5 μm. Frame transfer device identical to COROT CNES Proteus Mission. 2k x 2k used (exposure time controlled by shutter) @ -40°C

• Excellent characteristics:

- ► Dark current: 0.1 e-/s/pixel
- → Flatness: smooth and < 1 μ m (on solar limb position)
- ➡ Flatfield: some irregularities at short wavelengths
 □ ~ 15% @ 230 nm (laser stabilization)
- 2 EM (eng. models) delivered and currently under test
- Impact on imaging/scaling is due to CCD dimensions. Silicon CTE is 2 10⁻⁶ stringent temperature control to 0.2° for 0.4 mas error on radius (3 heaters on INVAR housing)

Error Budget Summary

Error source	Nature of the error	Dilatation	Effect on radius
Structure	tube carbon-carbon: 2 10^{-7} on 350 mm @ 0.5° C)	± 40 nm	0.25 mas
	primary mirror to focal plane: C-C tube on 150 mm @ 0.5°C	± 17 nm	0.11 mas
	links (Invar plates to tube, mirrors supports, piezos)	± 20 nm	0.12 mas
Optics	curvature of the primary mirror in SiC and thermal stability @ 0.2°C	12 nm	< 0.1 mas
	curvature of the secondary mirror in SiC and thermal stability $@ 0.1^{\circ}C$	3 nm	< 0.4 mas
CCD	silicon thermal expansion 2 10 ⁻⁶ on 12.5 mm @ 0.2°C	0.005 µm	0.4 mas
Mean quadrat	0.65 mas		

Error budget of SODISM telescope on the solar radius measurement

At <u>6</u> on the DIAMETER ******* 1.8 mas

Absolute Geometrical Calibration

- We use HIPPARCOS 100 000 stars: positions known to 1 mas in 1991 but: proper movement error of 0.6 to 1 mas per year
 8 to 10 mas error in 2005 (DIVA?)
- 3, 4 or more stars ⇒ better precision on the <u>absolute</u> scaling factor With <u>6 stars</u> ⇒ 15 relations and precision x 4
- Method : barycenter of stars (spreading by pointing stability of 0.01°/ second (± 18" on 1 second)
- Influence of photon noise and exposure time (dark current)
- In practice: if σ = 6 pixels (6"), 10⁷ photons (m_v = 5; type B5) in 1 s
 ⇒ absolute error on 1 star (beside absolute position) = 3 mas.
 <u>Several stars and several exposures, shorter exposure time or</u> <u>better pointing</u>:

2 mas or less

- Delays in the program and an alternative design proposed for the telescope resulted in a CNES AUDIT which ended recently
- The original concept (SiC mirrors, C-C tube, large CCD) is confirmed as the <u>nominal solution</u>
- Cooling of mirrors has to be confirmed by breadboarding before PDR (Implaunch in 2005-2007 window)
- Breadboard of active pointing carried in parallel
- The 2 EM of the Marconi/EEV CCD have been receipted and present excellent characteristics (dark current, flatness and flatfield). A test bench is setup (based on COROT bench)
- Electronics (CCD acquisition, compression and control) is under definition and could benefit of MPI/Lindau expertise

Conclusion

- The rightness of the proposed concept (C-C structure, SiC mirrors, large CCD) is confirmed and performances in the range of ± 2 mas on the absolute solar Diameter measure is foreseen. Relative measures to a significant fraction of a mas are probably possible.
- Despite the excellent properties of SiC, the heavy thermal load generated by Solar observing requires a careful cooling of the SiC mirrors because of the residual gradients
- Straylight effects have been sized (see the excellent P. Echeto poster)
- We thank the CNES who made these small missions a reality well suited for scientific needs by its coherent possibilities for pointing, mass, power, volume, telemetry and launch capabilities
- One concern though: the "spirit" of microsatellite based on short stimulating developments much along the UMEX line is in risk of "sedimentation" as classical 5-6 years programs. CNES and laboratories have responsabilities to reorient the current tendancy if several µsat per year are really expected (CNES and laboratories management structures)